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ABSTRACT 

Practical solutions of the reflection and transmission of radiation from very thick 
and semi-infinite homogeneous atmospheres with an arbitrary phase function are 
found as follows. Numerical data for three values of the thickness, computed by the 
doubling method, are fitted to rigorous asymptotic expressions. An automatic fitting 
procedure yields the constants and functions occurring in these expressions. These 
include the escape function, i.e., the solution of the corresponding Mime problem, 
the diffusion length and the extrapolation length. Results for isotropic scattering and 
for the Henyey-Greenstein phase functions are presented. The accuracy is excellent 
for single-scattering albedos >0.6. 

1. PROBLEM AND METHOD 

Light from a distant source, e.g. the Sun, falling on a cloud consisting of well 
separated water drops can be scattered many times in succession by different drops 
before ever emerging from the cloud. The problem to find the diffuse radiation 
field thus set up is the prototype of a multiple scattering or radiative transfer 
problem. If the cloud has the form of a homogeneous slab and the source illumi- 
nates it in a certain direction from above, the problem is to find the radiation 
emerging from the top of the layer (reflection) and from the bottom (transmission). 
Since the drops are far apart, only their far-field scattering pattern enters into the 
computation; random displacements wash out all interference effects. The basic 
given function therefore represents the combined intensity scattering pattern of 
all drops in a volume element; the traditional name for this function is the phase 
function. 

A thin slab is said to have the optical thickness d7 if a parallel beam shining 
perpendicularly through this slab is transmitted with 1 - dT of its original intensity. 
It is said to have an albedo a if a fraction a of the lost radiation reappears in the 
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form of scattered radiation. The remaining fraction I - a is absorbed in the 
scattering particles, converted into heat and its energy may reappear in a quite 
different, infrared, wavelength region, which we shall not consider. We assume that 
the cloud is statistically homogeneous. Further we assume that the incident and 
scattered light is unpolarized, although this is not essential to the method described 
below. 

The properties of the cloud now are fully characterized by the phase function 
@(cos a) and albedo a of a volume element and by its total optical thickness 6. 
We seek to determine the reflection function R(p, p,, , IJI - y,,) and transmission 
function T(p, pO, q~ - y,,), each of which is symmetric in E.L and pO and even in 
F - v,-, . Here CL,, is the cosine of the angle of incidence, p the cosine of the angle 
of emergence, both reckoned positive, and p) and yO are azimuth angles. For 
simplicity we restrict our attention in this paper to the averages of these functions 
over v - vo, i.e., to the azimuth-independent terms R(p, ,uo) and T(LL, po). The 
problem posed in this paper hardly arises for the other terms, anyhow, since the 
terms dependent on azimuth are damped out more rapidly in thick layers. 

Mathematically identical problems are encountered in neutron scattering. The 
restriction to a fixed wavelength band in optical scattering corresponds to the one- 
velocity assumption in neutron scattering. Numerous problems to find the entire 
radiation field, or only the reflection and transmission functions, have been devised 
and numerically worked out. Three books [l, 2, 31 may be cited for a full review. 

Most of the published numerical results refer to rather simple phase functions. 
Among these are isotropic scattering, linearly anisotropic scattering and scattering 
with a phase function expandible in Legendre functions up to N = 2. More strongly 
anisotropic phase functions, such as occur in natural haze and clouds, have made 
the numerical treatment of the transfer problems notoriously difficult, particularly 
for very thick atmospheres. The practical choice often was between crude treatment 
of the transfer problems with the desired phase function or exact treatment of the 
transfer problem with a very crude phase function. 

This paper poses no limitation on the form of the phase function. The method 
and results described here are based on the availability of 

(a) Expressions for the reflection and transmission by a homogeneous, plane- 
parallel atmosphere with large optical thickness b and arbitrary scattering pattern, 
which are asymptotically exact in the limit b ---f co. Most of these were first given 
by Germogenova [4]. They will be used here in the form derived from physical 
principles by Van de Hulst [5]. These formulae may be considered as asymptotic 
forms (for large optical depth) in which only the dominant terms of the full solution 
by Case’s method are retained. For a mathematical discussion of related problems 
compare U31, [61, 171, M). 

(b) The doubling method, which permits a simple and accurate computation 



ANISOTROPIC RADIATIVE TRANSFER 293 

of these functions for any finite b. This method, suggested by Van de Hulst and 
Irvine [9], was later used and described in some detail by a number of authors 
([lo], [ll], [12]). In a different context the same method had already been given by 
Peebles and Plesset [ 131). 

The “asymptotic fitting method” described in this paper is a sequel to (a) and (b). 
It consists of pushing the doubling method (b) far enough, say, to numerical 
results for b = 8, 16 and 32, and then choose the unknown functions and constants 
occurring in the expressions (a) to fit these numbers. This may be the fastest 
method yet available to calculate the reflection functions (in the terminology of 
neutron scattering, the “albedo problem”) and the emerging radiation (i.e., the 
“Milne problem”) for a semi-infinite atmosphere with an arbitrary nearly-conser- 
vative phase function. 

2. SCHEME OF COMPUTATION 

We employ the notation of [S] but write all integrals fully, instead of in the short- 
hand matrix notation employed there. The given function is the phase function 
@(cos a) with albedo a and anisotropy factor g defined by 

1 1 
ug = 2 I-, G(x) x dx 

The functions to be determined are R&J, p,,) = reflection function, K(&) = escape 
function, P(U) = diffusion pattern, and the constants k, m, 1, q occurring in 
Eqs. 3-6 below. Here I*,, (cosine of angle of incidence) and p (cosine of angle of 
emergence) range from 0 to 1, whereas u (the cosine of the angle between the 
direction of propagation and the downward vertical) has the full range from -1 
to $1. 

A homogeneous plane-parallel atmosphere of sufficient optical thickness b then 
has the following properties: 

If a < 1 (nonconservative case) 

Reflection function: 

W tc, 1-4 = R&G 14 - & e-kbK(t4 Khd (34 
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Transmission function: 

T(b, CL, ~0) = --!?--- e-kba4 QO) 1 -f” 

Intensity at midlayer, T = &b: 

(44 

Here 
f = le-Lb = e-ktb+2q) (6) 

Incidence is supposed to occur on the horizontal top surface with a flux rr per unit 
area. 

If a = 1 (conservative case) the corresponding formulae are: 

W, PCL, ~0) = R& PO) - T(h ~“9 PO) (3b) 
4Q) Go) 

T(b’ I”’ ‘OLg) = 3(1 - g)(b + 2q,) 

I(& 46 u, ~0) = [: + (1 _ g,;;, + 2qo) ] I 

(4b) 

(5b) 

The equations (3a)-(5a) and (3b)-(5b) are asymptotically correct for b + CD. 
Suppose we have obtained by the doubling method full numerical data for b = b, , 
2b,, 4b, and that b, is chosen large enough for equations (3)-(5) to hold with good 
numerical accuracy. We may then by subsequent solution of two quadratic equa- 
tions solve for the unknown constants and functions. 

The fitting process thus achieved is written down below in the form of a recipe 
which may be taken as the basis of a computer program. The recipe for the non- 
conservative case can be verified from equations (3a)-(5a) if we know that 
z = exp(--kb,), y = z + z-l, and 6 = Zz2. An enormous amount of redundancy 
can be built into the program because many expressions are derived as functions 
ofb,, orp, orpo, or all three which should be asymptotically independent of these 
variables. If b, is not chosen large enough, small variations with the redundant 
parameter are noticeable. If b, is chosen too large, cumulative errors or round-off 
errors may affect the numerical accuracy. 

The speed of the method cannot easily be assessed in an objective manner. The 
asymptotic fitting process adds an insignificant amount of computing time to the 
time necessary for executing the doubling method, say to b = 32. This may, 
therefore, seem a bit wasteful, ifonly the asymptotic results are sought. However, 
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the conceptual simplicity, and the many internal checks may often make this 
method more attractive than a computation based on the more abstract concepts 
of Case’s method. 

Recipe for the nonconservative case 

Choose a large 6, and find consecutively 

step 101 
102 
103 
104 

Remark: 1 
I 
7 
7 

105 s = R(4& 9 CL? PO) - Who > ~2 ~0) 
Who 3 P., ~0) - z2Wbo , PFL, ~0) 

1 

106 1 = 62-Z 
107 k = -(ln z)/& 3 
108 q = -(ln 1)/2k 

109 MP> ~0) = Who 7 ~9 PO) + W2bo > PL, ~0) 5 

110 m&d &ol = (1 - a2) z-2Wbo, I*, ~0) 5 

111 ~oC% , ~0) = j-’ Wo 3 bo , u, ~0) dz~ [= ND + NA] 4,5 
-1 

112 Wt2bo , ~00) = j-’ Wo , bo , u, ~0) u du [= $UD - $NA] 4,5 
-1 

113 Go> = (1 + 6) Mo(2bo , ~0Wz 5 
114 k-1%o) = (1 - 8) K(2bo , 14,M1 - a> z 5 
115 k = %d/[k-l~h>l 2, 3 
116 m = bW.4 &41/~(~~ &d 1 
117 W4 = [Who 2 bo , u, ~“0) + Who , bo , --up ~oN/z~(~o,) 2, 5 

Recipe for the conservative case 

Choose a large b and find 

201 R& PO) = Nb, ~7 ~0) + Ttb, ~7 ~0) Remark: 5 

202 t,,(b) = I“ j’ T(B, CL, ~0) PPO dp ho [= $UTU] 4 
0 0 
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203 

204 

205 

206 

Remarks: 
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2% = [3(1 - g) t,,]-’ - b 

0, PO) = j’ T@, P, ~“0) P 4 
0 

fW = TV> PI, ~o)Pfdb, PO) 

2% = W-(6 II, ~o)lV% CL, PO) 

[= ;UT] 

11-l - l} 

4, 5 

2, 5 

1,6 

1. These ratios of two functions of p and p. should be independent of ,u and ,uo; 
this provides many checks. The same ratio should be obtained if numerator and 
denominator are replaced by integrals over p or p. , or both. In practice we used 
integrals with the weights 4p,uo dp dp, to find these ratios; in the matrix notation 
[5] these were written as URU and UTU. 

2. Same as 1, but here numerator and denominator are functions of one variable 
p,, , which drops out in taking the ratio. 

3. These two formulae for k provide a sensitive check; formula 107 is the more 
accurate one. 

4. In these equations the corresponding expression in matrix notation is given in 
square brackets. 

5. Any of these functions of p and po, or of PO , or of p, can be integrated to find 
its moments. We can find these moments also directly by starting to use the 
corresponding moment at the righthand side. In our doubling program, the 
moments and bimoments of R, T and I were always given with the function. 

6. This independent way to derive 29, is added here for those who wish to avoid 
using the bi-moments tll . 

7. Both these equations are solutions of quadratic equations. Except in the case 
of very nearly conservative scattering, where z is close to 1, a quicker solution 
of these equations is obtained by expansion. We employ the fact that z < 1 and 
hence 6 < 1. 

Appropriate formulae are: 

z-1 = p/2 + (; + -$)(i - +) + O(3) 

z = p--1/2 - ;p-‘(~-’ - p-19 + O(z’) 
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3. RESULTS FOR ISOTROPIC SCATTERING 

The reflection and escape functions for isotropic scattering (g = 0) depend by 
well-known formulae on a single H-function: 

R&L, PO) = MP) H(P0)/4(P + PO) (7) 

a-4 = fw)~w//l - b-4 (8) 

As customary, the dependence of H, K and k on a is not explicitly written. These 
equations provide additional internal checks as well as checks against H-functions 
tabulated elsewhere. In the conservative case (a = 1) the same equations hold with 
k = 0, K(0) = i 43. 

We have executed the asymptotic fitting program described in the preceding 
section for g = 0 as we did for any other g. From the functions thus found, H@) 
was computed in three different ways, based on Eqs. (7) or (8): 

W-4 = KWW> PL)/~“~ (9) 
JfW = 4t&OL, 0)/a (10) 

NP) = (1 - W KWIK(O) (11) 

The computation was made for TV = 0.1,0.3, 0.5, 0.7, 0.9, 1 and a = 0.6,0.8, 0.9, 
0.95, 0.99, 1. A table is not presented, because the numbers from (9) and (10) 
always checked within 1 x 10s6 with the 6-decimal tables of Stibbs and Weir [14]. 
The values from (11) had the same accuracy for a = 1 and a = 0.99 but started 
to deviate in the fifth decimal at a = 0.9 and a = 0.95 and more strongly for lower 
a-values. 

Isotropic scattering offers further checks on the quantities k, m and 1. These 
functions of a can be solved (for g = 0) from the equations 

4 k(1 - k2) dk -= 
m a(a - 1 + k2) = - da (13) 

(14) 

K(O) = Wm) [l --f(O)1 (15) 
1 = (2m/ak)[K(0)12 = (2a/km)[l - f(0)12 (16) 

Equations (12) and (13) have been known since many years. Eqs. (14)-(16) form a 
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transcription of earlier results [15] into the notations employed here. Known 
relations of the H-functions make it possible to express also the moments of K(p) 
in closed forms: 

Ko = i’ K(P) 4 = (2/a) K(O) 
0 

[= NK] (17) 

Kl = 
I 1 

K(p) p dp = (2/ak)(l - CZ)~/~ K(0) [= QUK] 08) 
0 

Again, the matrix notation for these integrals is given in square brackets. Finally. 
we can transform (16) into 

I = ~kmK,~/2(1 - a) (19) 

Table 1 shows some comparisons made by means of these formulae. The 
asymptotic fitting results were obtained by means of the scheme in Section 2, 
taking b, = 16. The agreement for a = 0.8 and higher is excellent. This was 
further confirmed by comparing the extrapolation length, q, found by asymptotic 
fitting to the exact values tabulated by Heaslet and Warming [16]. For a = 0.6 the 
differences are of the order of one percent. 

The asymptotic fitting method is not accurate for a < 0.6, where k gets too close 
to 1. This is to be expected, for the derivation is based on the assumption that 
the factor exp(--b) can be neglected but exp(-kb) cannot. Table I suggests that 
fair accuracy is reached with the asymptotic fitting method if k < 0.9 and excellent 
results if k < 0.7. 

TABLE I 

CHECK CALCULATIONS FOR ISOTROPIC SCATTERING 

Quantity Method and equation a = 0.4 0.6 0.8 0.9 0.95 0.99 1 
~______~--- 

fitting, step 115 .99768 .90865 .71043 .52543 .37949 .17251 0 
k fitting, step 107 .98774 .90736 .71041 .52543 .37949 .17251 0 

exact, Eq. (12) .98562 .90733 .71041 .52543 .37949 .17251 0 
p(----- 

1 14.8520 6.21443 2.77038 1.66646 1.09974 .46751 0 
m 

fitting, step 116 
exact, Eq. (13) 21.1240 6.33416 2.77083 1.66646 1.09974 .46751 0 

~- --_____ 
fitting, step 106 .02621 .11628 .28279 .43617 .56687 .78068 1 

I fitting, Eq. (19) .02470 .11X3 .28275 .43617 56687 .78068 1 
exact, Eqs. (14), (16) .02740 .11492 .28275 .43617 .56688 .78069 1 

____------ 
; K(O) fitting, step 113 .02085 .07102 .17030 .24877 .30482 .37762 .43301 

exact, Eqs. (14), (15) .01599 .07027 .17029 .24877 .30482 .37762 .43301 
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The value of K(0) for isotropic, conservative scattering is 0.43301. For the same 
case we find by asymptotic fitting the extrapolation length q. = 0.7104435, as 
compared with the exact value 0.710446089800 (K. Grossman, private communica- 
tion). The difference of 2.6 x lO-‘j may be due to the limited number of gauss 
points in the integration. 

4. RESULTS FOR HENYEY-GREENSTEIN PHASE FUNCTIONS 

Like other authors [17], [18], [12] we adopted the Henyey-Greenstein phase 
functions 

@(g, a, cos a) = 41 - g”> 
(1 + g2 - 2g cos (X)3/2 

as a convenient set to experiment with numerical methods. These functions are 
completely determined by the parameters a = albedo and g = anisotropy factor; 
they permit a smooth transition from g = 0 (isotropic scattering) to g = 1 (com- 
plete forward scatter) or g = - 1 (complete backscatter). 

Presenting full data is impossible here, for not only are new tables required for 
each combination (g, a) but also the great simplification arising in isotropic 
scattering by the relation (7) does not have a simple equivalent for arbitrary phase 
functions. Hence &,(a, g, p, pO) is truly a function of four variables with no sim- 
plifying property, but its symmetry in TV and p,, . 

A selection of numerical results is presented in tables 2-4. Some comments on 
these tables will now be given. Unfortunately, there is little in the literature which 
may serve for a direct check on the accuracy of these data, except for the checks 
pertaining to g = 0, which have already been discussed. 

Table II presents the “constants”, i.e. the functions which do not depend on 
direction & or p). The values of k and m were checked against numbers obtained 
by solving an integral equation. We found k as the smallest eigenvalue of the 
equation 

(1 - ku) P(u) = ; j’ h(u, u) P(v) dv (21) 
1 

where 

h(u, u) = & j”” @(uu + (1 - 242)1/2 (1 - z?y cos v> c&p (22) 
0 

Normalizing the corresponding eigenfunction P(u) by 

;j’ P(u)du= 1 (23) 
1 
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we then found m by [5] 
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m= 
s 

l [P(u)]2 2u du 
-1 

(24) 

TABLE 11 

VARIATION OF THE NUMBERS k, m, AND q, AND SOME COMBINATIONS, 
WITH THE ALEZDO a AND ANLWTROPY g OF THE HENYEY-GREENSTEIN PI-ME FUNCTION. 

ALL Numms WERE OBTAINED BY ASYIWTOTIC FIITING 

Tabulated 
function 

isotropic waterdrops 
a g=o 0.25 0.5 0.75 0.875 

k 1 0 0 0 0 0 
.99 .I725 .1496 .1224 .0871 .0623 
.95 .3795 .3310 .2733 .1990 .I480 
.9 .5254 .4618 .3856 .2881 .2224 
.a .7104 .6344 .5418 .4234 .3448 

m 1 0 0 0 0 0 
.99 .468 .539 .660 .935 1.327 
.95 1.100 1.263 1.545 2.197 3.148 
.9 1.666 1.900 2.317 3.303 4.678 
.8 2.771 3.087 3.719 5.291 7.671 

(1 - a)(1 - g) k-* 1 
.99 
.95 
.9 
.a 

.3333 .3333 .3333 .3333 .3333 

.3361 .3350 .3336 .3295 .3220 

.3470 .3423 .3346 .3157 .2854 

.3622 .3517 .3363 .3012 .2528 

.3963 .3726 .34O6 .2789 .2103 

m(1 - g) k-’ 1 2.667 2.667 2.667 2.667 2.667 
.99 2.710 2.704 2.697 2.684 2.663 
.95 2.898 2.862 2.826 2.760 2.660 
.9 3.172 3.087 3.004 2.866 2.680 
.8 3.900 3.649 3.432 3.124 2.781 

(1 -g)q 1 .7104 .7109 .7120 .7134 .7140 
.99 .7176 .7167 .7158 .7123 .7040 
.95 .7479 .7409 .7317 .7089 .6696 
.9 .7896 .7735 .7528 .7066 .6369 
.8 .a890 .8481 .a000 .7075 .5900 

The values of k found from Eq. (21) showed no differences (in the decimals 
presented here) with the values found from asymptotic fitting shown in Table II. 
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The values of m found from Eq. (24) deviated by the following percentages from 
those shown in Table II: 

g = 0.75 g = 0.875 

a = 0.9 
a = 0.8 
a = 0.6 

0.01% 0.2 % 
0.03 % 0.6 % 
0.3 % 2.1 % 

TABLE III 

SAWLE VALUES OF THE &APE FUNCTION K(u, g, p) FOR THE 
HENYEY-GREENSTEIN PHASE FUNCTION. Two MOMENIT ARE ALSO GIVEN. 

ALL NIJMBERS WERE OBTAINED BY ASYMFTOTK FITTING 

Tabulated 
function 

isotropic large waterdrops 
g=o 0.25 0.5 0.75 0.875 

Na, g, 1) a=1 1.2591 1.2613 1.2653 1.2697 1.2713 
(perpendicular 0.99 1.1284 1.1101 1.0828 1.0258 .9556 
escape) 0.95 1.0204 .9830 .9353 .8550 .7790 

0.9 .9698 .9190 .8619 .7799 .7134 
0.8 .9399 .8638 .7942 -7151 .6626 

Ha, g, 0) a=1 .4330 .4242 .3951 .3326 .2722 
(grazing 0.99 .3776 .3635 .3280 .2566 .1889 
escape) 0.95 .3048 .2885 .2507 .1784 .I142 

0.9 2488 .2335 .1975 .1305 .0748 
0.8 .1703 .1599 .1306 .0774 .0377 

moment K,, Cl=1 .8660 .8644 .8599 .8524 .8427 
t= ml 0.99 .7629 .7486 .7231 .6709 ho90 

0.95 .6417 .6207 .5824 .5060 .4226 
0.9 .5528 .5320 .4913 .4105 .3271 
0.8 .4257 .4129 .3769 .3023 .2291 

moment 2KI 
[= UK] 

a=1 1 1 1 1 1 
0.99 .8844 .8695 .8446 .7922 .7270 
0.95 .7563 .7322 .6921 .6127 .5254 
0.9 .6654 5404 .5966 .5121 .4246 
0.8 .5360 .5181 .4781 .3984 .3191 

KU, g, 14 p=O .4330 .4242 .3951 .3326 .2722 
(conservative 0.1 .5401 .5341 .5160 .4842 .4628 
scattering) 0.3 .7112 .7082 .7009 .6921 .6880 

0.5 .8716 .8705 .8691 .8686 .8689 
0.7 1.0280 1.0285 1.0303 1.0331 1.0348 
0.9 1.1824 1.1841 1.1876 1.1917 1.1936 
1 1.2591 1.2613 1.2653 1.2697 1.2713 
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The differences are GO.01 % in all other entries. We conclude that a lack of 
accuracy of the asymptotic fitting method just makes itself felt in the lower right 
corner of the table. Similar inaccuracy may be present in Tables III and IV but we 
have no direct check. 

Two further combinations in Table II are presented. They approach for a + 1 
and arbitrary g the limits (1 - a)(1 - g)k-2 - l/3 and m(l - g)k-l -+ 8/3. It is 

TABLE IV 

REFLECTION FUNCTION R(u, g, 1, p) OF A SEMI-INFINI~ ATMOSPHERE WITH 
HENYEY-GREENSTEIN PHASE-FUNCTION, CHARACTEFUZED BY THE PARAMETERS a AND g, 

AND PERPENDICULAR INCIDENCE. THE FIRST MOMENT IS ALSO GIVEN. 
ALL NUMBERS HAVE BEEN OBTAINED BY A~YMPTO~C FITTING. 

Tabulated isotropic large waterdrops 
function a g=o 0.25 0.5 0.75 0.875 

m, g, 190) 1 .7270 ~5829 .5774 .4389 .3439 
.99 .6120 .5559 .4377 .2847 .1824 
.95 .4933 .4328 .3155 .1743 .0943 
.9 .4163 .3578 .2489 .1255 .0625 
.8 .3196 .2693 .1782 .0825 .0392 

W-J, g, 190.1) 1 .8243 .7889 .7107 .6190 .5721 
.99 .6815 .6294 .5283 .3941 .2967 
.95 .5360 .4760 .3691 .2325 .1441 
.9 .4436 .3842 .2827 .1610 .0910 
.8 .3309 .2783 .1927 .0986 .0517 

wa, g, 1,0.5) 1 .9755 .9682 .9581 
.99 .7542 .7171 .6598 
.95 .5498 .4951 .4164 
.9 .4318 .3730 .2937 
.8 .3012 .2451 .I762 

- -- 
.9486 .9437 
.5557 4416 
.2897 .1807 
.1795 .0975 
.0921 .O439 

Na, g, 1, 1) 1 1.0569 1.0717 1.0950 1.1188 1.1309 
.99 .7567 .7279 .6840 .5786 .4480 
.95 .5123 .4582 .3863 .2595 .I489 
.9 .3851 .3244 .2516 .I437 .0692 
.8 .2554 .1963 .I352 .0633 .0263 

.95 

.9 

.8 

1 1 1 1 1 
.7527 .7183 .6646 .5592 .4397 
.5355 .4809 .4039 .2768 .1677 
.4149 .3555 .2778 .1655 .0866 
.2853 2282 .I615 .0815 .0375 
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evident that within the range of a and g values shown, and barring the entries near 
the lower right corner, these numbers and hence k and m themselves can easily be 
found in 3 or 4 figures by interpolation. The final entry in Table II is the extra- 
polation length q, again for interpolation purposes multiplied by (1 - g). 

Some data about the escape function are presented in Table III. In order to save 
space we have presented only the extreme values at grazing angles & = 0) and in 
the normal direction (,u = l), as well as two moments. Only for conservative scat- 
tering values of K(a, g, p) in a number of intermediate directions are given. 

Values of the reflection function R(p, pO) presented in Table IV are limited to 
perpendicular incidence, p0 = 1. Other angles of incidence would not only require 
further tables of R(p, p,J, which we did obtain by asymptotic fitting, but also 
tables of the azimuth-dependent terms, which we have not yet computed. Again, 
one moment is presented. This is UR in matrix notation and is called the albedo 
of the half-space in the terminology of neutron scattering. Its value is 1 for a 
conservative atmosphere (a = 1). 

5. DWUSSION 

Upon scanning Tables II-IV we are struck first of all by the very small changes in 
all lines referring to conservative scattering, except when grazing angles are 
involved. Obviously, the reflection on and escape from a semi-infinite atmosphere 
are very similar for all values of g. There is a strong suggestion that finite limits for 
g + 1 exist but this has not been established as a fact. Van de Hulst and 
Grossman [12] have shown that a close similarity exists for finite conservative 
slabs of optical thickness b if b(1 - g) is kept constant and for finite non- 
conservative slabs if, in addition, y = (1 - a)/k is kept constant. The present 
tables provide further illustrations of these similarity laws. 

The fact that all numerical examples are based on one special set of phase 
functions may have enhanced the similarity. Phase functions not belonging to this 
set might behave rather differently. In order to check this suspicion, the results for 
the Henyey-Greenstein function obtained here may be compared to those for phase 
functions with only a few terms in the expansion in terms of Legendre functions: 

qcos a) = 5 o,P,(cos 0) 
0=0 

(25) 

Many transfer problems with such truncated phase functions with N = 0 (isotropic 
scattering), 1, or 2 have been solved exactly ([l], [19]). The Henyey-Greenstein 
functions Eq. (20), have N = co, W, = (2n + 1)g”. 

58x/3/2-10 
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Table V shows such a comparison for conservative scattering. The phase function 
in each column is defined by w, = (2n + l)(i)” for n < N and 0 for it > N. The 
columns N = 0 and N = co were copied from Tables III and IV. As 
Chandrasekhar has shown, the azimuth-independent terms in conservative scat- 
tering for N = 1 are identical to those for N = 0. The numbers for N = 2 have 
been computed by interpolation to we = 1.25 in the tables of Horak and Janousek 

TABLE V 

RESULTS FOR TRUNCATED PHASE FUNCTIONS COMPARED wm 
THOSE FOR m FULL HJJNYEY-GREENSTEIN PHASE FUNCTION. 

m EXAMPLE REFERS TO CONSERVATWE SCAITERING, g = 0.50 

Function 

N=O 
(isotropic) 

N=l N=m 
(linearly (full phase 

anisotropic) N=2 function) 

K(o) .4330 .4330 .3959 .3951 

K(0.5) .8716 .8716 .8642 .8691 

K(1) 1.2591 1.2591 1.2742 1.2653 

m .8660 .8660 .8579 .8599 

R(l,O) .7270 .7270 .5182 .5774 

R&OS) .9755 .9755 .9118 .9581 

NL 1) 1.0569 1.0569 1.1824 1.0950 

[20]. The values of the escape function for N = 2 approximate those for the 
untruncated phase function within a fraction of one per cent. The differences in the 
reflection function seems more erratic, probably because the radiation that has 
been scattered only once or twice contributes a larger fraction of the total result. 
The maximum difference produced by truncating the phase function from N = co 
to N = 2 in this example is 8 per cent. 

A further comparison was made with a solution made by Weinman [213 for the 
radiative transfer of red light through a cloud of waterdrops with a prescribed size 
distribution. Weinman represents the conservative phase function by a gaussian 
diffraction peak plus 11 Legendre functions (N = 10) and solves the transfer 
problem by an approximate method. His curve representing the transmitted 
intensity for a total layer thickness 20 is quite smooth and agrees within 2 per cent 
with the curve computed by Twomey et al. [22] for the same situation. Assuming 
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that b = 20 is thick enough for the asymptotic theory to hold we have renormalized 
this radiation to flux 1 and obtain the numbers 

/.L=l 0.9 0.7 0.5 0.3 0.1 0 

K(p) = 1.35 1.21 1.02 0.86 0.67 0.47 0.37 

with the average value [NK] = 0.84. These numbers agree indeed within a few 
per cent with those given in Table III, except for an overshoot of some 6 per cent at 
p = 1 and 10 per cent at p = 0. It is impossible to tell whether these differences 
must be attributed to reading numbers from the graph, or to the approximate 
nature of Weinman’s computation, or to an actual difference between the functions 
K(~J) belonging to the underlying phase functions. But the suggestion is strong that 
the latter difference is very small indeed and would often vanish within the practical 
accuracy attained in astrophysical measurements. 

A comparison of the albedos given by Weinman is equally gratifying. The flux 
integral of Eqs. (3b) and (4b) is 

UT=l-UR= 4KhJ 
3u - g)@ + 2qo) 

We can take account of the diffraction peak by inserting g = 0.734 and 
b = 0.5707*, where 7* is the total depth in Weinman’s calculation. Assuming q. 
known we obtain from Weinman’s values of UR for T* = 8 and 20 values ofK(&) 
which differ by 0.3 per cent and 0.0 per cent, respectively, from the value in 
Table III. 

Similar checks on even more asymmetric phase functions did not come out quite 
so well. The curves of Figure 2a from Irvine [ll] are based on a phase function 
resembling that of a cumulus cloud at 0.7~. Here g = 0.8175. Integrating these 
curves I found values of 1 - UR which fall 5 to 10 per cent below the values 
predicted by Eq. (26) with K(1) interpolated from Table III. The Monte-Carlo 
computations of Plass and Kattawar [23] show a difference in the same direction 
of 12 per cent and (in one case) 27 per cent. It is quite possible that K(p) is somewhat 
different in these examples. Also, the reduced thickness b( 1 - g), which is 64 in the 
last example, may not be big enough yet to give a good approach to the asymptotic 
theory. 

The final conclusion is that, in spite of the smooth character of the phase func- 
tions underlying Tables II to IV we can often use the results from these tables as a 
very good approximation to the radiative transfer in actual clouds. Practical 
formulae based on this conclusion and describing the reflection and transmission 
by very thick layers with nearly conservative scattering are presented elsewhere [24]. 
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